Parametric Function Plotter

Best viewed in Chrome.
All other browsers only have partial support for the features used in this demo. NOTE: If you do stuff like divide by zero, don't be surprised if nothing happens.

≤ t ≤

Sorry, I couldn't compute your input. Examples

```  Archemedean spiral (partial):
```
t = (-PI, 0);
t*(cos(3*t))
t*(sin(3*t))

```
Butterfly:
```
t = (0,14PI);
sin(t)*(E^cos(t) - 2*cos(4*t) - sin(t/12)^5)
cos(t)*(E^cos(t) - 2*cos(4*t) - sin(t/12)^5)

```
Circular:
```
t = (0,14PI);
31*cos(t)-7*cos(31*t/7)
31*sin(t)-7*sin(31*t/7)

```
```
t = (0,2*PI);
1.5*cos(t) - cos(30*t)
1.5*sin(t) - sin(30*t)

```
```
Bean:
t = (0,1/6*PI);
cos(2*PI*t)*((cos(2*PI*t))^3 + (sin(2*PI*t))^3)
sin(2*PI*t)*((cos(2*PI*t))^3 + (sin(2*PI*t))^3)

```
```
Flower:
t = (0,2*PI);
cos(9*t)*sin(t)
cos(9*t)*cos(t)

```
```
Heart:
t = (0,2*PI);
16*sin(t)^3
13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t)

```
```
Lattice:
t = (0,2*PI);
16*sin(t*16)
19*cos(t*19)

```
```

Functions:

sin(x) Sine of x (x is in radians) acos(x) Arc cosine of x (in radians) atan(x) Arc tangent of x (in radians) sqrt(x) Square root of x. Result is NaN (Not a Number) if x is negative. log(x) Natural logarithm of x (not base-10). It’s log instead of ln because that’s what JavaScript calls it. abs(x) Absolute value (magnatude) of x
ceil(x) Ceiling of x — the smallest integer that’s >= x. floor(x) Floor of x — the largest integer that’s <= x round(x) X, rounded to the nearest integer, using “gradeschool rounding”. exp(x) ex (exponential/antilogarithm function with base e) random(n) Get a random number in the range [0, n). If n is zero, or not provided, it defaults to 1. fac(n) n! (factorial of n: “n * (n-1) * (n-2) * … * 2 * 1″)
min(a,b,…) Get the smallest (“minimum”) number in the list max(a,b,…) Get the largest (“maximum”) number in the list pyt(a, b) Pythagorean function, i.e. the c in “c2 = a2 + b2“ pow(x, y) xy. This is exactly the same as “x^y”. It’s just provided since it’s in the Math object from JavaScript atan2(y, x) arc tangent of x/y. i.e. the angle between (0, 0) and (x, y) in radians.
E PI